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Abstract: Using the recently developed nonlinear multivariate Granger causality test by Diks and Wolski 

(2015) and an augmented production function which incorporates both physical and human capital, this 

study investigates the causal link between economic development and aggregate and disaggregate energy 

consumption in China during the period of 1965-2014. This is the first time the nonlinear Granger causal 

test is applied to a multivariate framework in the energy-growth nexus literature and human capital is 

accounted for in the Chinese context. Our results confirm the neutrality hypothesis for both aggregate 

energy use and coal, natural gas and hydroelectricity consumption, while unidirectional causality running 

from GDP to oil is found using the nonlinear approach. Weak evidence on the substitution effect between 

human capital and energy/coal is also observed in the linear approach. These imply that energy 

conservation policies are feasible in China and policies advocating the improvement of human capital 

associated with energy-specific skills may be helpful as well in reducing pollution. 
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1. Introduction 

Human capital has long been recognized as an important contributor to the economic growth 

(Lucas, 1988; Barro, 1991; Mankiw, et al., 1992; Aghion and Howitt, 2009). According to the World 

Bank, human capital, rather than physical capital, exerts the greatest influence on economic growth 

throughout the world (Auty, 2001). However, in the burgeoning literature on the energy-growth nexus 

(see Ozturk, 2010; Omri, 2014 for a review), we can hardly find any studies which have taken this factor 

into consideration. One exception is Pablo-Romero and Sánchez-Braza (2015) who used an aggregate 

translog production function, with human and physical capital and productive energy use as factor inputs 

to estimate the role of energy in economic growth. Their results suggest the presence of a strong 

substitution effect between human capital and energy and imply that training of the workers could reduce 

the energy use. Another exception is Fang and Chang (2016) who studied the energy-growth causal link 

in the Asia Pacific region by considering both the impact of human capital and the cross-country 

dependence. Their results support the conservation hypothesis in the Asia Pacific region but conclusions 

vary across countries.
2
  

Indeed, human capital may be associated with energy consumption in many ways. On the one 

hand, it can promote the research and development of new energy-efficient technologies, and help a 

nation catch up with the existing advanced technologies. Human capital may also be positively associated 

with public awareness of the importance of energy saving, which also contributes to the negative 

relationship between human capital and energy consumption. On the other hand, development of human 

capital could stimulate the change of economic structure and accelerate industrialization. Therefore, a 

positive association between human capital and energy consumption is also possible. Due to the offsetting 

                                                           
2
 As pointed out by Fang and Chang (2016), one of the reasons that human capital is seldom taken into 

consideration in this strand of literature may be the lack of reliable data on the human capital variable. The 
recently built human capital index by Feenstra et al. (2015), however, makes more studies on this topic possible 
and thus we expect that the role of human capital in the link of energy and growth will draw more attention and 
investigation.  



3 

 

effects, the existence and direction of a causal relationship between energy consumption and human 

capital deserve rigorous investigation.
3
  

This study aims to investigate the energy-growth relationship in China through a prism of an 

augmented production function, which additionally takes into consideration the role of human capital and 

energy. In particular, we study the latter at the aggregate and disaggregate levels, i.e. the total energy 

consumption and its sector-specific components in the coal, oil, natural gas and hydroelectricity sectors. 

We take China as the case study because of its economic and energy profiles in the world picture. China, 

as the second largest economy in the world, contributes 22.4% of total world primary energy consumption 

and 27.1% of greenhouse gas emission in 2013 (BP Statistics Review of World Energy 2014), making it 

the top energy consumer and carbon dioxide emitter in the world. Moreover, China is the largest 

consumer of coal and the second-largest consumer of oil in the world (EIA, 2014). Its energy-growth 

relationship is, therefore, of worldwide concern for scholars and policy makers. 

This study contributes to the existing energy-growth nexus literature in China by highlighting the 

role of human capital in the multivariate framework. Previous studies which consider physical capital, 

labor and energy as inputs in the energy-augmented production function have come to mixed results of 

the directions of Granger causality between energy consumption and GDP (see the appendix Table A1 for 

a brief summary); also they have ignored impacts of changes in skills, knowledge and environmental 

protection and energy saving consciousness of labor on the energy demand and economic development.  

The second major contribution of this study is its methodological approach. On top of standard 

linear methods, we also apply a novel nonlinear multivariate Granger causality framework, developed 

recently by Diks and Wolski (2015) (DW thereafter). DW test is a multivariate extension of the Diks and 

Panchenko (2006) nonlinear Granger causality framework. The latter has been already widely used in 

empirical literature (see Chiou-Wei et al., 2008; Bekiros and Diks, 2008), because of its power and much 

better performance than an earlier method proposed by Hiemstra and Jones (1994). However, the test has 
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 Human capital has received a lot of attention in the more recent literature (see for instance Zivin et al., 2015).  
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consistent asymptotic properties only in a bivariate setting, making it cumbersome to extend to 

multivariate applications.
4
 DW test offers a relief by providing a fully consistent multivariate testing 

methodology. Results from the DW test tend to be more reliable because of two reasons: first, the linear 

Granger causality test may fail to capture the nonlinear predictive power; second, there is an increasing 

empirical evidence on the existence of nonlinearity in energy and economic development variables in the 

literature (Lee and Chang, 2007). To our best knowledge, this is one of the first attempts to study the 

energy-growth nexus through a prism of correctly-specified nonlinear multivariate methods.  

The remainder of the study is organized as follows: Section 2 describes the data and outlines the 

econometric methodologies; results and discussions are presented in section 3; and section 4 concludes 

with policy implications. 

 

2. Data and methods 

2.1 Data 

This study uses annual time series data of China retrieved from the Penn World Table version 9.0 

(Feenstra et al., 2015) and British Petroleum’s 2015 Statistical Review of World Energy. Real gross 

domestic product (GDP) and physical capital are in million US$ at the constant 2005 prices. Human 

capital stock is converted to the aggregate level by multiplying the human capital index with the 

employment level (measured in millions). All these variables are from the Penn World Table version 9.0. 

Due to the way how human capital stock is constructed, we use a four-variable framework which includes 

physical and human capital, energy and real GDP to investigate the energy-growth nexus in China.  

It is worthwhile explaining human capital index further given its importance in this study. Human 

capital index (hc) in the Penn World Table version 9.0 is constructed as follows:  

ℎ𝑐 = 𝑒𝜙(𝑠) 

                                                           
4
 For instance, one could project the multivariate setting on a bivariate plane before performing the test. 

Nevertheless, such methods can suffer from substantial information losses and, as a consequence, they can lead to 
biased inference. 
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where 𝑠 is the average years of schooling for the working-age population (aged 15 and above) 

and 𝜙(𝑠) is a piece-wise linear function which is given below:
5
 

𝜙(𝑠) = {
0.134𝑠                                                                         if 𝑠 ≤ 4
0.134 ∗ 4 + 0.101(𝑠 − 4)                              if 4 < 𝑠 ≤ 8
0.134 ∗ 4 + 0.101 ∗ 4 + 0.068(𝑠 − 8)               if 𝑠 > 8

. 

Energy to be examined in this study includes not only the aggregate energy consumption but the 

disaggregate energy consumption as well, including the consumption of coal, oil, natural gas and 

hydroelectricity. Nuclear and renewables consumption constitute only 3% of the total energy 

consumption in 2014, and even less in early years, so they are excluded from the analysis. All the energy 

consumption is measured in million-tons oil equivalent (mtoe) and taken from the British Petroleum’s 

2015 statistical review of world energy. Using all observations available, this study covers a period of 

1965-2014. Figure 1 shows clearly that coal is the primary energy type but its share in the energy mix is 

decreasing over time. On the other hand, the share of hydroelectricity consumption has been steadily 

increasing from less than 4% in 1965 to 8% in the most recent year.    

Figure 1: Share of energy consumption in China

 

                                                           
5
 It is assumed rates of return vary for different years of education (Caselli, 2005, Psacharopoulos, 1994). More 

discussion on the human capital index measure refers to Inklaar and Timmer (2013) and Fang (2016). 
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All the variables are expressed in natural logarithms so that the first differences approximate the 

growth rate. The notations are as follows: lnGDP denotes log of real GDP, lnK and lnH denotes log of 

physical and human capital stocks, and lnE, lnCoal, lnOil, lnGas, and lnHydro are logs of the aggregate 

energy, coal, oil, gas and hydroelectricity consumption, respectively. Summary statistics of the variables 

are given in the Appendix Table A2. 

Figure 2 shows the growth rates of China’s real GDP and aggregate energy consumption for the 

period of 1966-2014. It is evident that the growth patterns of the two series are closely correlated. In most 

of the years, economic growth rate is larger than growth rate of energy consumption; and energy 

consumption seems to be more volatile. Figure 3 shows the evolution of employment level and human 

capital during the period. Given the measure of human capital used in this study (human capital index 

times employment level) and human capital index is larger than 1, it is expected that human capital is 

larger than employment level, as can be seen in Figure 3. Furthermore, Figure 3 shows that human capital 

has a steeper growth than employment level. This suggests that prior multivariate framework using labor 

input may have ignored important implications from the over-time change in human capital.   

Figure 2: Growth rate of GDP and energy consumption (%) 
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Figure 3: Evolution of human capital and employment 

 

 

2.2 Econometric methods 

We analyze both linear and nonlinear causal relationship between energy consumption and 

economic growth in China for a period of 1965-2014 using an augmented production function which 

considers the role of human capital. In doing so, we first carry out unit root and Johansen cointegration 

tests for the variables of interest. After that, VECM is applied for the linear Granger causality test and 

recently developed Diks and Wolski (2015, DW hereafter) method is used for the nonlinear Granger 

causality test.  

2.2.1 Tests for stationarity 

We check the stationarity of the variables using four unit root tests: augmented Dickey and Fuller 

(1979) tests, Dickey-Fuller tests with GLS detrending (Elliott et al., 1996), Philips and Perron (1988) tests 

and Kwiatkowski-Philips-Schmidt-Shin tests (Kwiatkowski et al., 1992). The first three have the null 

hypothesis of a unit root against stationarity, while the KPSS assumes stationary series under the null.  

2.2.2 Tests for cointegration 
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This study applies the Johansen cointegration test (Johansen and Juselius, 1990) to test for 

cointegration; because unlike Engle-Granger test, it enables identification of more than one cointegrating 

relationship and allows testing restrictions imposed on the long-run coefficients.  

If all the variables in Xt are I(1), according to the Granger representation theorem, the vector Xt 

has a vector error correction (VEC) representation as follows: 

∆𝑋𝑡 = Π𝑋𝑡−1 + ∑ Γ𝑖∆𝑋𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜇 + 𝜖𝑡 

where ∆ is a difference operator, X is a 4 X 1 vector containing lnGDP, lnK, lnH and one of the 

energy variables lnE, lnCoal, lnOil, lnGas, and lnHydro, Π = ∑ Ai
p
i=1 − Ι and Γi = − ∑ Aj

p
j=i+1 . If the rank 

of Π equals the number of variables which is four in our case, the variables are stable in levels and there is 

no cointegration. If the rank of Π equals zero, the VEC specification is reduced to an unrestricted VAR 

and none of the linear combinations are stationary. If the rank of Π equals r where 0 < 𝑟 < 4, the matrix 

Π  can be decomposed into αβ′  with α  and β  both 4 X r  matrices. The matrix  α = (α1, α2, α3, α4)′ 

represents the speed of adjustment, and the cointegrating matrix β = (β1, … , βr) indicates the long-run 

equilibrium. The Johansen test uses a maximum likelihood method to estimate the cointegrating rank r 

and parameters α and β. The model can therefore be expanded as follows: 

∆𝑙𝑛𝐺𝐷𝑃𝑡 = 𝜇1 + ∑ 𝛼1,𝑘𝛽𝑘
′ 𝑋𝑡−1

𝑟

𝑘=1

+ ∑ 𝛾11,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑠 + ∑ 𝛾12,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐾𝑡−𝑠 + ∑ 𝛾13,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐻𝑡−𝑠 + ∑ 𝛾14,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐸𝑡−𝑠 + 𝜖1,𝑡 

∆𝑙𝑛𝐾𝑡 = 𝜇2 + ∑ 𝛼2,𝑘𝛽𝑘
′ 𝑋𝑡−1

𝑟

𝑘=1

+ ∑ 𝛾21,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑠 + ∑ 𝛾22,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐾𝑡−𝑠 + ∑ 𝛾23,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐻𝑡−𝑠 + ∑ 𝛾24,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐸𝑡−𝑠 + 𝜖2,𝑡 

∆𝑙𝑛𝐻𝑡 = 𝜇3 + ∑ 𝛼3,𝑘𝛽𝑘
′ 𝑋𝑡−1

𝑟

𝑘=1

+ ∑ 𝛾31,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑠 + ∑ 𝛾32,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐾𝑡−𝑠 + ∑ 𝛾33,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐻𝑡−𝑠 + ∑ 𝛾34,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐸𝑡−𝑠 + 𝜖3,𝑡 

∆𝑙𝑛𝐸𝑡 = 𝜇4 + ∑ 𝛼4,𝑘𝛽𝑘
′ 𝑋𝑡−1

𝑟

𝑘=1

+ ∑ 𝛾41,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑠 + ∑ 𝛾42,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐾𝑡−𝑠 + ∑ 𝛾43,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐻𝑡−𝑠 + ∑ 𝛾44,𝑠

𝑝−1

𝑠=1

∆𝑙𝑛𝐸𝑡−𝑠 + 𝜖4,𝑡 

where 𝛽𝑘
′ 𝑋𝑡−1(𝑘 = 1 𝑡𝑜 𝑟) denotes the 𝑘-th cointegrating equations. Each of the cointegrating 

vector indicates the existence of a stable long-run equilibrium state. Deviation from its long-run 
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equilibrium will feed back on its future changes to bring its movement back to the long-run equilibrium 

state, and the proportion corrected in each short-term period is represented by coefficients of the error-

correction terms 𝛼 . A joint test proposed by Johansen (1992) is employed to determine the model 

specification and the cointegrating rank 𝑟.  

The Johansen cointegration test is to estimate the matrix Π from an unrestricted VAR and test the 

restriction implied by the reduced rank Π based on the trace test and maximum eigenvalue test as follows: 

𝜆𝑡𝑟𝑎𝑐𝑒 = −𝑇 ∑ ln(1 − 𝜆𝑖
2)

𝑛

𝑖=𝑟+1

;  𝜆𝑚𝑎𝑥(𝑟, 𝑟 + 1) = −𝑇𝑙𝑛(1 − 𝜆𝑟+1) 

Where 𝜆𝑖 is the ordered eigenvalue obtained from the estimated matrix and 𝑇 is the number of 

usable observations after lag adjustment. The number of cointegrating relations is determined by 

proceeding sequentially from 𝑟 = 0 to 𝑟 = 𝑘 − 1 until the null hypothesis cannot be rejected. The null 

hypothesis of the trace statistic is 𝑟  cointegrating relations against the alternative of more than 𝑟 

cointegrating relations; and the null hypothesis of the maximum eigenvalue statistic is 𝑟 cointegrating 

relations against the alternative of 𝑟 + 1 cointegrating relations. 

2.2.3 Tests for linear and nonlinear Granger causality 

We test both the linear and nonlinear Granger causal relationship among the four variables of 

interest. For the linear Granger causality test, the VEC model can be applied when the variables are 

cointegrated. We examine the statistical significance of all lagged dynamic terms of the independent 

variable. If 𝛾𝑖𝑗,𝑠(𝑠 = 1,2 … 𝑝 − 1) ≠ 0 , there exists a (short-run) Granger causal relationship running 

from variable 𝑗 to variable 𝑖. The long-run Granger causality is tested by examining the significance of the 

speed of adjustment coefficients 𝛼 or by performing the joint test of the lagged independent variables and 

the error correction term (𝛽𝑘

′
𝑋𝑡−1  in the VECM specification). For instance, if 𝛼1,𝑘(𝑘 = 1,2 … 𝑟)  and 

𝛾14,𝑠(𝑠 = 1,2 … 𝑝 − 1) are significantly different from zero, we will say that there exists a long-run 

Granger causality relationship running from energy consumption to economic growth. 
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Besides the linear Granger causality test, we conduct nonlinear Granger causality test proposed 

by DW. This is the first time the multivariate nonlinear Granger causality test is applied in the energy-

growth nexus studies. The null hypothesis that energy does not Granger cause economic growth can be 

expressed as: 

𝐻0: 𝑙𝑛𝐺𝐷𝑃𝑡+1|(𝑙𝑛𝐸𝑡
𝑙𝐸 , 𝑙𝑛𝐺𝐷𝑃𝑡

𝑙𝑌 , 𝑙𝑛𝐾𝑡
𝑙𝐾 , 𝑙𝑛𝐻𝑡

𝑙𝐻)~𝑙𝑛𝐺𝐷𝑃𝑡+1|(𝑙𝑛𝐺𝐷𝑃𝑡
𝑙𝑌 , 𝑙𝑛𝐾𝑡

𝑙𝐾 , 𝑙𝑛𝐻𝑡
𝑙𝐻) 

where ‘~’ denotes equivalence in distribution and 𝑙𝑖 (𝑖 = 𝐸, 𝐺𝐷𝑃, 𝐾, 𝐻) represents the lag of the 

specific variable. Under the null hypothesis the series {𝑙𝑛𝐸𝑡
𝑙𝐸} does not contain any additional 

information on the realizations of 𝑙𝑛𝐺𝐷𝑃𝑡+1besides information spanned by variables {𝑙𝑛𝐾𝑡
𝑙𝐾} 

and {𝑙𝑛𝐻𝑡
𝑙𝐻 }. To test for Granger causality between other pairs of variables we change the 

causality direction. For instance, to test whether economic growth Granger causes energy 

consumption, we reverse the direction as: 

𝐻0: 𝑙𝑛𝐸𝑡+1|(𝑙𝑛𝐺𝐷𝑃𝑡
𝑙𝐸 , 𝑙𝑛𝐸𝑡

𝑙𝑌 , 𝑙𝑛𝐾𝑡
𝑙𝐾 , 𝑙𝑛𝐻𝑡

𝑙𝐻)~𝑙𝑛𝐸𝑡+1|(𝑙𝑛𝐸𝑡
𝑙𝑌 , 𝑙𝑛𝐾𝑡

𝑙𝐾 , 𝑙𝑛𝐻𝑡
𝑙𝐻) 

Formally, DW extend the nonlinear Granger causality testing approach proposed by Diks 

and Panchenko (2006) to the multivariate setting. The null hypothesis is tested over the 

conditional densities of variables of interest; however, to guarantee the consistency of the 

multivariate test statistic, the densities are evaluated at the sharpened data set. DW show that the 

test statistic is dominated by the bias component which in a multivariate setting increases 

disproportionally. The sharpening procedure reduces the estimator bias by providing more 

accurate point estimates with asymptotically unchanged variance, which eventually leads to a 

consistent test statistic. In line with DW, let 𝑋𝑡 = 𝑙𝑛𝐸𝑡 , 𝒀𝑡 = (𝑙𝑛𝐺𝐷𝑃𝑡, 𝑙𝑛𝐾𝑡, 𝑙𝑛𝐻𝑡)  and 𝑍𝑡 =

𝑙𝑛𝐺𝐷𝑃𝑡+1, and the compact form 𝑊𝑡 = (𝑋𝑡, 𝒀𝑡, 𝑍𝑡).The sharpened test statistic is  

𝑇𝑛
𝑠(𝜀𝑛) =

𝑛 − 1

𝑛(𝑛 − 2)
∑[𝑓𝑋,𝒀,𝑍

𝑠 (𝑋𝑡, 𝒀𝑡 , 𝑍𝑡)𝑓𝒀
𝑠(𝒀𝑡) − 𝑓𝑋,𝒀

𝑠 (𝑋𝑡, 𝒀𝑡)𝑓𝒀,𝑍
𝑠 (𝒀𝑡, 𝑍𝑡)]

𝑛

𝑡=1
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In the statistic, 𝑓𝑊
𝑠 (𝑊𝑡) is a sharpened form of the local density estimator of a 𝑑𝑊-variate 

vector W: 𝑓𝑊
𝑠 (𝑊𝑡) = ((𝑛 − 1)𝜀)−𝑑𝑊 ∑ 𝐾 (

𝑊𝑡−𝜓𝑝(𝑊𝑘)

𝜀𝑛
)𝑘,𝑘≠𝑡  where 𝐾()  is a density estimation 

kernel and 𝜓𝑝() is a sharpening map used to reduce the bias of the estimator whose explicit form 

depends on order of bias reduction, determined by subscript 𝑝. DW prove that one can always 

find a sharpening function of order 𝑝 for which there exists a sequence of bandwidths 𝜀𝑛 =

𝐶𝑛−𝛽(𝐶 > 0,
1

2𝑝
< 𝛽 <

1

𝑑𝑊
 ) that guarantees that the sharpened test statistic satisfies: 

√𝑛
(𝑇𝑛

𝑠(𝜀𝑛) − 𝑞)

𝑆𝑡

𝑑
→ 𝑁(0,1) 

where 𝑆𝑡
2 is a consistent estimator of the asymptotic variance of √𝑛(𝑇𝑛

𝑠(𝜀𝑛) − 𝑞) and 𝑞 is 

defined as 𝐸[𝑓𝑋,𝒀,𝑍(𝑋, 𝒀, 𝑍)𝑓𝒀(𝒀) − 𝑓𝑋,𝒀(𝑋, 𝒀)𝑓𝒀,𝑍(𝒀, 𝑍)].  

One can easily verify that under the two-variable framework, i.e. when 𝑋𝑡 and 𝑌𝑡 are both 

univariate, the optimal sharpening order is  𝑝 = 2 and consequently there is no need to reduce 

the estimator bias, so that the test statistic is parallel to the popular one developed by Diks and 

Panchenko (2006).     

 

3. Results and discussion 

Following the methodology part, results of unit root tests, cointegration tests, and linear and 

nonlinear Granger causality tests are presented and discussed in this section.  

3.1 Stationarity test results 

Table 1 shows the results of the ADF, DF-GLS, PP and KPSS unit root tests in the level variables 

and their first differences. Two model specifications, one with only intercept and the other with both the 

intercept and trend, are presented. The results indicate that all variables are non-stationary in levels and 

the variables - lnGDP, lnE, lnCoal, lnOil and lnHydro - are stationary in first difference no matter which 
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model specification is considered. So economic growth, aggregate energy consumption and disaggregate 

consumption in coal, oil and hydroelectricity are confirmed to be integrated of order one. lnK and lnH are 

found to be integrated of order one only when the model includes both intercept and time trend, and lnGas 

is first difference stationary in the model with intercept only. From a holistic perspective, we can 

conclude that all the variables are trend stationary in first differences. Therefore, we can investigate 

whether they are cointegrated using the Johansen cointegration test in the next step.   

Table 1: Results of unit root tests 

 Model with intercept  Model with intercept and trend 

 ADF DF-GLS PP KPSS ADF DF-GLS PP KPSS 

Level 

lnGDP 2.297 1.403 3.363 0.934*** -2.875 -1.731 -2.115 0.218*** 

lnK 3.740 0.094 8.278 0.936*** 0.530 -1.383 0.082 0.242*** 

lnH -3.534** -0.282 -9.343*** 0.917*** -0.871 -1.590 -0.132 0.244*** 

lnE -2.227 1.090 -0.685 0.928*** -3.124 -3.070* -2.079 0.100 

lnCoal -1.418 0.477 -0.569 0.927*** -3.420* -3.478** -2.259 0.085 

lnOil -1.731 0.609 -2.735* 0.902*** -2.500 -1.476 -2.968 0.115 

lnGas -0.735 0.499 -1.023 0.862*** -5.092*** -3.212** -1.918 0.117 

lnHydro 1.105 0.873 1.413 0.934*** -2.379 -2.142 -2.432 0.138* 

First difference 

D(lnGDP) -5.066*** -5.088*** -4.957*** 0.481** -5.642*** -5.535*** -5.806*** 0.091 

D(lnK) -1.651 -1.464 -1.363 0.828*** -4.716*** -4.795*** -3.243* 0.110 

D(lnH) -1.178 -0.688 -0.959 0.857*** -3.814** -3.544** -2.940 0.077 

D(lnE) -3.771*** -3.767*** -3.154** 0.086 -3.743** -3.814*** -3.079 0.065 

D(lnCoal) -3.988*** -4.032*** -3.388** 0.050 -3.951** -4.038*** -3.331* 0.047 

D(lnOil) -3.894*** -2.464** -3.975*** 0.339 -4.014** -3.638** -4.128** 0.142* 

D(lnGas) -2.952** -2.652*** -2.952** 0.178 -2.909 -2.875 -2.909 0.169** 

D(lnHydro) -7.713*** -7.155*** -7.726*** 0.224 -7.906*** -7.934*** -7.951*** 0.058 
Notes: For Augmented Dickey-Fuller (ADF) and modified Dickey-Fuller (DF-GLS) tests, the maximum lag is set to 

four based on a T1/3 rule. The optimal lag length is determined by the Schwarz information criterion (SIC). For 

Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests, Bartlett kernel estimation method is 

chosen and the bandwidth is decided using the Newey and West method. ***,** and * denote the significance level 

at 1%, 5% and 10% respectively. 

 

 

3.2 Cointegration test results 

Since the Johansen result is sensitive to the choice of the lag length, we first determine the 

optimal lag length for the VAR (which is estimated with intercepts only) using the sequential modified 

likelihood ratio (LR), Akaike information criterion (AIC), SIC and Hannan-Quinn information criterion 

(HQ). As shown in Table 2, the optimal lag length for all the five set of variables is two. The choice of lag 
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length is further validated by the normality and absence of serial correlation tests for the residuals of VAR 

model.  

Table 2: VAR lag selection 

Lag LR AIC SIC HQ 

(a) (lnGDP, lnK, lnH, lnE) 

1 799.46 -22.29 -21.50 -22.00 

2 80.19* -23.77* -22.33* -23.23* 

3 20.11 -23.68 -21.61 -22.91 

4 11.19 -23.37 -20.67 -22.36 

(b) (lnGDP, lnK, lnH, lnCoal) 

1 774.17 -21.69 -20.89 -21.39 

2 75.41* -23.03* -21.60* -22.49* 

3 18.14 -22.88 -20.82 -22.11 

4 11.07 -22.57 -19.87 -21.56 

(c) (lnGDP, lnK, lnH, lnOil) 

1 829.67 -22.10 -21.31 -21.80 

2 51.66* -22.80 -21.37* -22.27* 

3 30.36 -23.03* -20.96 -22.25 

4 19.00 -22.99 -20.28 -21.97 

(d) (lnGDP, lnK, lnH, lnGas) 

1 873.28 -21.84 -21.05 -21.54 

2 65.50* -22.92* -21.49* -22.38* 

3 16.96 -22.73 -20.67 -21.96 

4 17.18 -22.63 -19.93 -21.62 

(e) (lnGDP, lnK, lnH, lnHydro) 

1 727.88 -20.50 -19.70 -20.20 

2 59.53* -21.41* -19.98* -20.88* 

3 19.22 -21.30 -19.23 -20.52 

4 10.14 -20.95 -18.25 -19.94 
Note: * indicates lag order selected by the criterion.Column LR denotes the likelihood ratio test results, AIC stands 

for the Akaike information criterion, SIC for Schwarz information criterion and HQ for Hannan–Quinn information 

criterion.  

 

Using a joint test to determine the cointegration rank and the model specification as discussed in 

Johansen (1992) and Ahking (2002), we find evidence of using the model with intercept in the 

cointegration equation and no constant in VAR. Based on this model specification, Table 3 presents 

Johansen and Juselies (1990) cointegration test results using trace statistics 𝜆𝑡𝑟𝑎𝑐𝑒  and maximum 

eigenvalue statistic 𝜆𝑚𝑎𝑥, respectively. Their corresponding critical values at the 5% significance level 

are also given in the table. For the model using either the aggregate energy consumption or the 

disaggregate energy consumption, the first hypothesis of 𝑟 = 0 is rejected by both the trace and maximum 
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eigenvalue statistics, while the second hypothesis of 𝑟 = 1 cannot be rejected, suggesting the existence of 

one cointegrating vector. The evidence suggests, there is a linear combination of real GDP, physical 

capital, human capital and energy consumption (of both the aggregate and the disaggregate type) which is 

stable in the long run.   

Table 3: Johansen cointegration test results 

 lnE lnCoal lnOil lnGas lnHydro 0.05 critical values 

(a) Trace statistics       

r=0 vs r≥1 66.781 63.150 67.104 65.829 64.524 54.079 

r≤1 vs r≥2 32.183 29.081 34.205 33.248 28.615 35.193 

r≤2 vs r≥3 18.549 16.941 19.328 16.536 16.370 20.262 

r≤3 vs r≥4 6.700 6.260 6.180 7.422 7.523 9.165 

(b) Max eigenvalue statistics       

r=0 vs r=1 34.598 34.070 32.899 32.582 35.909 28.588 

r≤1 vs r=2 13.633 12.140 14.876 16.712 12.245 22.300 

r≤2 vs r=3 11.849 10.680 13.149 9.114 8.847 15.892 

r≤3 vs r=4 6.700 6.260 6.180 7.422 7.523 9.165 
Note: The Johansen cointegration test results are based on the model with intercept in the cointegration equation and 

no constant in the VAR. The variables include lnGDP, lnK, lnH, and one of the energy variables lnE, lnCoal, lnOil, 

lnGas and lnHydro.  

 

3.3 Linear and nonlinear Granger causality test results 

Given the novelty of multivariate nonlinear Granger casusality test being applied to the economic 

growth-energy nexus literature, we first present the sharpened test statistics and associated p-values for 

various pairs of variables in Table 4. To determine the nature of Granger causality we apply the test on 

the raw and VECM-filtered data. Before applying the DW test, the data are standardized by a normal 

transformation. Since the DW test assumes stationarity of the underlying data, we consider the detrended 

first differences of original variables as inputs.
6
 For transparency, we focus on pair-wise Granger causal 

relations, conditioning on the influence from other variables. 

 

 

 

                                                           
6
 The differenced data are not fully stationary. Therefore, to guarantee t the consistency of the nonlinear 

framework, we take into account detrended first differences as suggested by stationarity test results. 
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Table 4: Diks and Wolski (2015) multivariate nonlinear Granger causality test results 

  
Detrended first 

difference 
 VECM residuals  

X Y X→Y  Y→X  X→Y  Y→X  

  Statistic p-value Statistic 
p-

value 
Statistic p-value Statistic 

p-

value 

Energy GDP 0.307 [0.379] 0.342 [0.366] 0.388 [0.349] 1.414 [0.079] 

Coal GDP 0.827 [0.204] 0.201 [0.420] 0.674 [0.250] 0.088 [0.465] 

Oil GDP 1.092 [0.137] 1.401 [0.081] 0.595 [0.276] 1.299 [0.097] 

Natural gas GDP -0.713 [0.762] 1.157 [0.124] 0.778 [0.218] 1.538 [0.062] 

Hydroelectricity GDP -2.335 [0.990] -0.773 [0.780] -1.351 [0.912] -0.584 [0.720] 

Energy Human capital 0.364 [0.358] 0.592 [0.277] 0.932 [0.176] 0.078 [0.470] 

Coal Human capital 0.368 [0.357] 0.162 [0.436] 0.069 [0.473] 0.051 [0.480] 

Oil Human capital 0.824 [0.205] 0.992 [0.161] 0.555 [0.290] -1.589 [0.944] 

Natural gas Human capital -0.065 [0.526] 1.022 [0.153] 0.911 [0.181] 0.086 [0.466] 

Hydroelectricity Human capital -0.818 [0.793] -0.545 [0.707] -3.490 [0.9998] -0.922 [0.822] 
Note: DW results are presented for the detrended first differences and VECM-filtered residuals. Each specification 

includes the full variable set, as either variables X and Y or as conditioning variables. The data are standardized by a 

normal transformation. The optimal number of lags is selected using the Schwarz information criterion and in all 

settings is equal to 1. Test statistics and corresponding p-values are reported in respective columns. Values in bold 

highlight the results significant at 10% level. 

 

The nonlinear Granger causality test results show that there is no evidence that aggregate energy 

or any type of energy consumption Granger causes economic growth in China. However, economic 

growth is found to Granger cause oil consumption using either the detrended first difference or VECM 

residuals. Besides, no Granger causal relationship is observed between energy consumption and human 

capital using the DW test.  

To compare the findings from the nonlinear Granger causality tests with those from the linear 

Granger causality test (Appendix Table A3), we summarize the conclusions on the directions of Granger 

causality for different energy measures and economic development as well as human capital in Table 5. 

As clearly shown, different conclusions are obtained from linear and nonlinear Granger causality tests. 

The linear Granger causal test results find no presence of Granger causal relationship between any type of 

energy consumption and economic development in China, while human capital seems to Granger cause 

aggregate energy use and coal consumption in the long run. The neutrality hypothesis is mostly supported 

by nonlinear Granger causality tests except for oil consumption which seems to fit the conservative 
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hypothesis. However, Granger causality running from human capital to aggregate energy use and coal 

consumption does not appear in the nonlinear framework, suggesting that this finding is not robust and 

may be subject to a model bias. 

Table 5: Granger causality test results 

  Panel A: linear Granger causality Panel B: nonlinear Granger causality 

  Raw data VECM residuals 
Detrended first 

difference 
VECM residuals 

X Y X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X 

Energy GDP - - - - - - - * 

Coal GDP - - - - - - - - 

Oil GDP - - - - - * - * 

Natural gas GDP - - - - - - - * 

Hydroelectricity GDP - - - - - - - - 

Energy Human capital - * - - - - - - 

Coal Human capital - * - - -  - - 

Oil Human capital - - - - - - - - 

Natural gas Human capital - - - - - - - - 

Hydroelectricity Human capital - - - - -  - - 
Note: Comparison between linear (Panel A) and nonlinear (Panel B) Granger causality results. Each specification 

includes the full variable set, as either variables X and Y or as conditioning variables. The optimal number of lags is 

selected using the Schwarz information criterion. For nonlinear tests the data are standardized by normal 

transformation. * indicates significance level at 10%. 

 

This finding of neutrality between energy use and GDP is consistent with findings of Soytas and 

Sari (2006) and Yalta and Cakar (2012), but different from other studies using Granger-VECM tests 

(Yuan et al., 2008; Wang et al., 2011; Shahbaz et al., 2013) probably because of the uniqueness of 

incorporating human capital into the energy-augmented production function in this study. Our findings 

suggest that energy conservative policies are implementable and they are less likely to cause the 

economic slowdown in China. Furthermore, the causality running from human capital to the aggregate 

energy consumption and coal consumption found from the linear approach seems to indicate the 

substitution effect between human capital and energy/coal. However, it is not supported by the nonlinear 

Granger test.  
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4. Conclusions and policy implications 

This study examines the causal relationship between energy consumption, human capital and 

economic growth in China during the period of 1965-2014. In addition to the standard linear Granger 

causal test using VEC model, we apply the recently developed nonlinear multivariate Granger causality 

test by Diks and Wolski (2015) to investigate the existence and directions of Granger causality 

relationships among the four variables. Both the aggregate and disaggregate energy consumption (coal, 

oil, natural gas, hydroelectricity) are examined. Results from both the linear and nonlinear Granger 

causality tests in general support the neutrality hypothesis that there are no causal link between energy 

and economic growth in China (except that GDP is found to Granger cause oil consumption in the DW 

test). The substitution effect between human capital and energy/coal is evidenced in the linear approach 

but no causal link between human capital and any type of energy use is identified by the nonlinear 

approach. 

While there are two distinctive contributions to the energy-growth literature (namely, considering 

the role of human capital in the causal relationship between energy and economic development in China 

and the application of multivariate nonlinear Granger causality test of Diks and Wolski (2015)), this study 

has some limitations. First, this study considers only the supply-side approach; and the demand-side 

approach may provide more insights (Bloch et al., 2012; 2015). Second, we uses the national level data in 

China; and the regional heterogeneity in the energy consumption and resource distributions is not 

accounted for. Provincial or sectorial analysis using the same framework that incorporates the variable of 

human capital may be a promising extension in the future (Zhang and Xu, 2012; Herrerias et al., 2013).  

There are some policy implications that can be drawn from this study. First, both the linear and 

nonlinear Granger causality test results imply that prudent energy conservation policy on any energy 

sector is feasible in China. Second, based on the weak evidence on the energy-human capital substitution 

effect found in the linear Granger test results, the government may take strategic measures to increase 

investment on the human capital associated with the research and development of new energy-efficient 
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technologies so as to reduce the energy in particular coal consumption which has the most detrimental 

impact on environment.  
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Appendix  

Table A1: Summary of energy-growth nexus studies in China 

Authors Time 

period 

Methodology Variables Causality 

Energy-growth nexus 
Shiu and Lam (2004) 1971-2000 Johansen cointegration; 

Granger-VECM 

Y, electricity GDP ← E in the short and long run 

Soytas and Sari 

(2006) 

1971-2002 Toda-Yamamoto Y,K,L,E Neutrality 

Yuan et al. (2007) 1978-2004 Johansen cointegration; 

Granger-VECM 

Y, electricity GDP ← E 

Yuan et al. (2008) 1963-2005 Johansen cointegration; 

Granger-VECM 

Y, K, L, E GDP ↔ E in the long run, GDP → E in the short 

run; 

Electricity: GDP ↔ E in the long run, GDP ← E 

in the short run;  

Coal: GDP ↔ E in the long run; GDP → E in the 

short run; 

Oil: GDP ↔ E in both the short and long run 

Wang et al. (2011) 1972-2006 ARDL, Granger-

VECM 

Y, K, L, E GDP ← E in both the long run and short run 

Akkemik et al. 

(2012) 

1986-2008 Panel Granger causality Y, E Mixed results for provinces 

Li and Leung (2012) 1985-2008 Panel cointegration, 

panel ECM 

Y, coal in the long run:  GDP ↔ E for coastal and 

central region; 

GDP → E for western region 

Yalta and Cakar 

(2012) 

1971-2007 VAR, Meboot Y, K, L, E Neutrality  

Zhang and Xu (2012) 1995-2008 Panel cointegration, 

panel ECM 

Y, E, price GDP → E 

Zhang and Yang 

(2013) 

1978-2009 Toda-Yamamoto Y, K, L, E(coal, 

oil, gas) 

 

GDP ↔ E 

Shahbaz et al. (2013) 1971-2011 ARDL, Johansen 

cointegration, Granger-

VECM 

Y, E, financial 

development, 

K, international 

trade 

GDP ← E 

Herrerias et al. (2013) 1995-2009 Panel cointegration, 

panel FMOLS, panel 

DOLS (across regions) 

Y, E(coal, 

electricity, oil, 

coke) 

Total energy, Oil, coal: GDP → E in the long run 

Electricity, coke: GDP ↔ E in the long run 

Oil, coke: GDP → E in the short run 

Total energy, electricity, coal: GDP ↔ E in the 

short run 

Bhattacharya et al. 

(2015) 

1978-2010 ARDL, Toda–

Yamamoto causality 

test 

Y, coal, K, L, 

technology 

index 

Coal → GDP 

Energy-environment-growth nexus 
Zou and Chau (2006) 1953-2002 Johansen cointegration; 

Granger-VECM 

Y, oil GDP ↔ E in the long run;  

GDP ← E in the short run 

Zhang and Cheng 

(2009) 

1960-2007 Toda-Yamamoto Y, CO2, K, L 

(urban 

population), E 

GDP → E in the long run 

Chang (2010) 1981-2006 Johansen cointegration; 

Granger-VECM 

Y, CO2, crude 

oil, natural gas, 

coal, electricity 

Oil, Coal: GDP → E 

Natural gas: Non causality 

Electricity: GDP ← E 
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Wang et al. (2011) 1995-2007 Panel cointegration, 

panel-VECM 

Y, CO2, E GDP ↔ E 

Fei et al. (2011) 1985-2007 Panel cointegration, 

panel DOLS 

Y, E, CO2 GDP ↔ E 

Bloch et al. (2012) 1977-2008 Johansen cointegration; 

Granger-VECM 

Y, K, L, coal, 

CO2 

GDP ← E in both the short and long run (supply-

side) 

     

Lin and Moubarak 

(2014) 

1977-2011 ARDL, Granger-

VECM 

Y, L, renewable 

energy, CO2 

GDP ↔ renewable energy 

Long et al. (2015) 1952-2012 Granger-VECM Y, K, L, E(coal, 

oil, gas, 

electricity, 

hydro, nuclear), 

CO2 

GDP ↔ coal, gas, electricity 

Bloch et al. (2015) 1977-2013 

(supply-

side); 

1965-2011 

(demand-

side) 

ARDL, Granger-

VECM 

Y, K, L, E, 

coal, oil, 

renewable 

energy, CO2, 

price 

GDP ↔ coal, oil, renewable energy 

Note: This table summarizes the energy-growth nexus literature that investigates only China. Cross-

country studies that includes China (for example Govindaraju and Tang, 2013; Cowan et al. 2014; and 

Bildirici and Bakirtas, 2014) are not included in the review. Relation X→Y (X←Y) means that the study 

found a significant relation from variable X onto Y (Y onto X), and X↔Y denotes a significant 

bidirectional relation between X and Y variables. 

 

  

Table A2: Summary statistics of variables for 1965-2014 

 Mean S.D. Min Max 

lnY 14.904 0.959 13.509 16.658 

lnK 15.683 1.245 13.844 18.023 

lnH 6.947 0.501 5.938 7.587 

lnE 6.494 0.898 4.855 7.997 

lnCoal 6.200 0.854 4.682 7.582 

lnOil 4.761 1.003 2.394 6.254 

lnGas 2.716 1.243 0.023 5.118 

lnHydro 3.325 1.145 1.478 5.484 

 

 

  



24 

 

Table A3: Long-run and short-run linear Granger causality test 

(a) For model with lnE 

Dependent 
variables 

Sources of causation 

 Short-run Long-run 

 ΔlnGDP ΔlnK ΔlnH ΔlnE ECT ECT 
GDP 

ECT K ECT H ECT E 

ΔlnGDP - 6.993 28.005 1.743 17.901 - 1.425 4.580 0.104 

  [0.008] [0.000] [0.187] [0.000]  [0.233] [0.032] [0.747] 

ΔlnK 9.315 - 15.831 0.038 14.797 7.607 - 5.632 0.257 

 [0.002]  [0.000] [0.846] [0.000] [0.006]  [0.018] [0.612] 

ΔlnH 0.022 0.014 - 0.639 0.087 0.026 0.003 - 0.629 

 [0.883] [0.905]  [0.424] [0.768] [0.872] [0.957]  [0.428] 

ΔlnE 0.698 13.141 22.520 - 16.366 1.874 2.045 2.859 - 

 [0.403] [0.000] [0.000]  [0.000] [0.171] [0.153] [0.091]  

 

(b) For model with lnCoal 

Dependent 
variables 

Sources of causation 

 Short-run Long-run 

 ΔlnGDP ΔlnK ΔlnH ΔlnCoal ECT ECT 
GDP 

ECT K ECT H ECT Coal 

ΔlnGDP - 5.865 28.653 1.750 18.460 - 2.130 5.137 0.661 

  [0.015] [0.000] [0.186] [0.000]  [0.144] [0.023] [0.416] 

ΔlnK 11.670 - 16.141 0.905 15.667 9.514 - 7.533 1.230 

 [0.001]  [0.000] [0.341] [0.000] [0.002]  [0.006] [0.267] 

ΔlnH 0.004 0.023 - 0.184 0.106 0.002 0.006 - 0.186 

 [0.952] [0.879]  [0.668] [0.745] [0.968] [0.936]  [0.666] 

ΔlnCoal 0.062 12.084 20.183 - 16.272 0.570 3.025 4.226 - 

 [0.803] [0.001] [0.000]  [0.000] [0.450] [0.082] [0.040]  
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(c) For model with lnOil 

Dependent 
variables 

Sources of causation 

 Short-run Long-run 

 ΔlnGDP ΔlnK ΔlnH ΔlnOil ECT ECT 
GDP 

ECT K ECT H ECT Oil 

ΔlnGDP - 9.098 16.722 0.009 13.172 - 4.162 6.925 1.146 

  [0.003] [0.000] [0.926] [0.000]  [0.041] [0.009] [0.285] 

ΔlnK 10.670 - 21.765 1.115 15.595 6.358 - 1.331 0.079 

 [0.001]  [0.000] [0.291] [0.000] [0.012]  [0.249] [0.778] 

ΔlnH 0.000 0.128 - 1.819 0.242 0.001 0.057 - 1.715 

 [0.991] [0.721]  [0.177] [0.623] [0.978] [0.812]  [0.190] 

ΔlnOil 0.254 2.902 2.578 - 3.667 0.414 1.296 0.831 - 

 [0.614] [0.089] [0.108]  [0.056] [0.520] [0.255] [0.362]  

(d) For model with lnGas 

Dependent 
variables 

Sources of causation 

 Short-run Long-run 

 ΔlnGDP ΔlnK ΔlnH ΔlnGas ECT ECT 
GDP 

ECT K ECT H ECT Gas 

ΔlnGDP - 8.148 22.174 0.072 15.793 - 0.995 0.624 0.133 

  [0.004] [0.000] [0.788] [0.000]  [0.319] [0.430] [0.715] 

ΔlnK 11.096 - 20.870 1.968 14.323 6.169 - 2.002 0.357 

 [0.001]  [0.000] [0.161] [0.000] [0.013]  [0.157] [0.550] 

ΔlnH 0.032 0.154 - 1.735 0.152 0.024 0.080 - 1.643 

 [0.859] [0.695]  [0.188] [0.696] [0.876] [0.777]  [0.200] 

ΔlnGas 0.027 1.333 2.625 - 2.236 0.129 0.318 0.812 - 

 [0.869] [0.248] [0.105]  [0.135] [0.719] [0.573] [0.368]  

 

(e) For model with lnHydro 

Dependent 
variables 

Sources of causation 

 Short-run Long-run 

 ΔlnGDP ΔlnK ΔlnH ΔlnHydro ECT ECT 
GDP 

ECT K ECT H ECT Hydro 

ΔlnGDP - 6.510 27.715 2.042 18.914 - 0.001 7.045 1.162 

  [0.011] [0.000] [0.153] [0.000]  [0.974] [0.008] [0.281] 

ΔlnK 12.733 - 17.011 0.383 14.657 8.534 - 7.759 0.233 

 [0.000]  [0.000] [0.536] [0.000] [0.004]  [0.005] [0.630] 

ΔlnH 0.194 0.028 - 0.103 0.133 0.176 0.011 - 0.101 

 [0.660] [0.868]  [0.748] [0.715] [0.675] [0.917]  [0.750] 

ΔlnHydro 0.162 3.885 1.349 - 0.785 0.206 3.084 0.889 - 

 [0.687] [0.049] [0.246]  [0.376] [0.650] [0.079] [0.346]  

Note: P-values in parentheses. 


