
Package ‘rejustify’
April 6, 2020

Type Package

Title Support for Rejustify API

Version 1.1.1

Author M. Wolski <marcin@rejustify.com>

Maintainer M. Wolski <marcin@rejustify.com>

Description Set of routines to facilitate communication with rejustify API.

License GPL-3

Encoding UTF-8

LazyData true

Imports httr (>= 1.4),
jsonlite (>= 1.6)

RoxygenNote 7.0.2

R topics documented:

adjust . 1
analyze . 3
callCurl . 5
fill . 6
isMissing . 8
labels . 8
register . 9
setCurl . 10
vis . 10

Index 12

adjust changes the elements of basic blocks used by rejustify API

1

2 adjust

Description

The purpose of the function is to provide a possibly seamless way of adjusting blocks used in
communication with rejustify API, in particular with the fill endpoint. The blocks include: data
structure (structure), default values (default) and matching keys (kets). Items may only be
deleted for specific matching dimensions proposed by keys, for the two other blocks it is possible
only to change the relevant values.

Upon changes in structure, the corresponding p_class or p_data will be set to -1. This is the
way to inform API that the original structure has changed and, if learn option is enabled, the
new values will be used to train the algorithms in the back end. If learn is disabled, information
will not be stored by the API but the changes will be recognized in the current API call.

Usage

adjust(block, column = NULL, id = NULL, items = NULL)

Arguments

block A data structure to be changed. Currently supported structures include structure,
default and keys.

column The data column (or raw in case of horizontal datasets) to be adjusted. Vector
values are supported.

id The identifier of the specific element to be changed. Currently it should be only
used in structure with multi-line headers (see analyze for details).

items Specific items to be changed with the new values to be assigned. If the values
are set to NA, NULL or "", the specific item will be removed from the block (only
for keys). Items may be multi-valued.

Value

adjusted structure of the df data set

Examples

#API setup
setCurl()

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = c(NA, NA, NA),
check.names = FALSE, stringsAsFactors = FALSE)

#endpoint analyze
st <- analyze(df)

#adjust structures
st <- adjust(st, id = 2, items = list('feature' = 'country'))
st <- adjust(st, column = 3, items = list('provider' = 'IMF', 'table' = 'WEO'))

#endpoint fill

analyze 3

df1 <- fill(df, st)

#adjust default values
default <- adjust(df1$default, column = 3, items = list('Time Dimension' = '2013'))

#adjust keys
keys <- adjust(df1$keys, column = 3, items = list('id.x' = c(3,1,2) , 'id.y' = c(1,2,3)))
keys <- adjust(df1$keys, column = 3, items = list('id.x' = 3 , 'id.y' = NA))

analyze communicates with rejustify/analyze API endpoint

Description

The function submits the data set to the analyze API endpoint and returns the proposed structure of
the data. At the current stage data set must be rectangular, either vertical or horizontal.

API recognizes the multi-dimension and multi-line headers. The first inits rows/columns are
collapsed using sep character. Make sure that the separator doesn’t appear in the header values. It
is possible to separate dimensions in single-line headers (see examples below).

The classification algorithms are applied to the values in the rows/columns if they are not empty,
and to the headers if the rows/columns are empty. For efficiency reasons only a sample of values
in each column is analyzed. To improve the classification accuracy, you can ask the API to draw a
larger sample by setting fast=FALSE. For empty columns the API returns the proposed resources
that appear to fit well in the empty spaces given the header information and overall structure of df.

The basic properties are characterized by classes. Currently, the API distinguishes between 6
classes: general, geography, unit, time, sector, number. They describe the basic characteristics
of the values, and they are further used to propose the best transformations and matching methods
for data reconciliation. Classes are further supported by features, which determine the characteris-
tics in greater detail, such as class geography may be further supported by feature country.

Cleaner contains the basic set of transformations applied to each value in a dimension to retrieve
machine-readable representation. For instance, values y1999, y2000, ..., clearly correspond to years,
however, they will be processed much faster if stripped from the initial y character, such as ^y.
Cleaner allows basic regular expressions.

Finally, format corresponds to the format of the values, and it is particularly useful for time-series
operations. Format allows the standard date formats (see ?as.Date).

The classification algorithm can be substantially improved by allowing it to recall how it was used
in the past and how well it performed. Parameter learn controls this feature, however, by default
it is disabled. The information stored by rejustify is tailored to each user individually and it can
substantially increase the usability of the API. For instance, the proposed provider for empty
row/column with header ’gross domestic product’ is IMF. Selecting another provider, for instance
AMECO, will teach the algorithm that for this combination of headers and rows/columns AMECO is the
preferred provider, such that the next time API is called, there will be higher chance of AMECO to be
picked by default. To enable learning option in all API calls by default, run setCurl(learn=TRUE).

If learn=TRUE, the information stored by rejustify include (i) the information changed by the
user with respect to assigned class, feature, cleaner and format, (ii) resources determined
by provider, table and headers of df, (iii) hand-picked matching values for value-selection.
The information will be stored only upon a change of values within groups (i-iii).

4 analyze

Usage

analyze(
df,
shape = "vertical",
inits = 1,
fast = TRUE,
sep = ",",
learn = getOption("rejustify.learn"),
token = getOption("rejustify.token"),
email = getOption("rejustify.email"),
url = getOption("rejustify.mainUrl")

)

Arguments

df The data set to be analyzed. Must be matrix-convertible. If data frame, the di-
mension names will be taken as the row/column names. If matrix, the row/column
names will be ignored, and the header will be set from matrix values in line with
inits and sep specification.

shape It informs the API whether the data set should be read by columns (vertical)
or by rows (horizontal). The default is vertical.

inits It informs the API how many initial rows (or columns in horizontal data), corre-
spond to the header description. The default is inits=1.

fast Informs the API on how big a sample draw of original data should be. The larger
the sample, the more precise but overall slower the algorithm. Under the fast =
TRUE the API samples 5 fast = FALSE option it is 25%. Default is fast=TRUE.

sep The header can also be described by single field values, separated by a given
character separator, for instance ’GDP, Austria, 1999’. The option informs the
API which separator should be used to split the initial header string into corre-
sponding dimensions. The default is sep=','.

learn It should be set as TRUE if the user accepts rejustify to track her/his activity to
enhance the performance of the AI algorithms (it is not enabled by default). To
change this option for all API calls run setCurl(learn=TRUE).

token API token. By default read from global variables.

email E-mail address for the account. By default read from global variables.

url API url. By default read from global variables.

Value

structure of the df data set

Examples

#API setup
setCurl()

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

callCurl 5

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = NA,
check.names = FALSE, stringsAsFactors = FALSE)

analyze(df)

#data set with one-line multi-dimension header (semi-colon separated)
df <- data.frame(country = c("Poland", "Poland", "Poland"),

`gross domestic product;2009` = NA,
`gross domestic product;2010` = NA,
check.names = FALSE, stringsAsFactors = FALSE)

analyze(df, sep = ";")

#data set with multi-line header
df <- cbind(c(NA, "country", "Poland", "Poland", "Poland"),

c("gross domestic product", "2009", NA, NA, NA),
c("gross domestic product", "2010", NA, NA, NA))

analyze(df, inits = 2)

callCurl a wrapper of the httr GET/POST functions

Description

The function offers a basic functionality of commands GET/POST from httr package to commu-
nicate with the APIs. If needed, the proxy settings can be given explicitly, or set in global variables
rejustify.proxyUrl and rejustify.proxyPort.

Usage

callCurl(
method = "GET",
url = NULL,
body = NULL,
proxyUrl = getOption("rejustify.proxyUrl"),
proxyPort = getOption("rejustify.proxyPort")

)

Arguments

method Method of the call (GET or POST).

url Address of the API.

body Request body in case of using POST method.

proxyUrl Url address of the proxy server.

proxyPort Communication port of the proxy server.

Value

API response or errors

6 fill

fill communicates with rejustify/fill API endpoint

Description

The function submits the request to the API fill endpoint to retrieve the desired extra data points.
At the current stage dataset must be rectangular, and structure should be in the shape proposed
analyze function. The minimum required by the endpoint is the data set and the corresponding
structure. You can browse the available resources at https://rejustify.com/repos). Other
features, including private resources and models, are taken as defined for the account.

The API defines the submitted data set as x and any server-side data set as y. The corresponding
structures are marked with the same principle, as structure.x and structure.y, for instance.
The principle rule of any data manipulation is to never change data x (except for missing values),
but only adjust y.

Usage

fill(
df,
structure,
keys = NULL,
default = NULL,
shape = "vertical",
inits = 1,
sep = ",",
learn = getOption("rejustify.learn"),
accu = 0.75,
form = "full",
token = getOption("rejustify.token"),
email = getOption("rejustify.email"),
url = getOption("rejustify.mainUrl")

)

Arguments

df The data set to be analyzed. Must be matrix-convertible. If data frame, the di-
mension names will be taken as the row/column names. If matrix, the row/column
names will be ignored, and the header will be set from matrix values in line with
inits and sep specification.

structure Structure of the x data set, characterizing classes, features, cleaners and formats
of the columns/rows, and data provider/tables for empty columns. Perfectly, it
should come from analyze endpoint.

keys The matching keys and matching methods between dimensions in x and y data
sets. The elements in keys are determined based on information provided in
data x and y, for each empty column. The details behind both data structures
can be visualized by structure.x and structure.y.
Matching keys are given consecutively, i.e. the first element in id.x and name.x
corresponds to the first element in id.y and name.y, and so on. Dimension

fill 7

names are given for better readability of the results, however, they are not nec-
essary for API recognition. keys return also data classification in element class
and the proposed matching method for each part of id.x and id.y.

Currently, API suports 6 matching methods: synonym-proximity-matching,
synonym-matching, proximity-matching, time-matching, exact-matching
and value-selection, which are given in a diminishing order of complexi-
tiy. synonym-proximity-matching uses the proximity between the values in
data x and y to the coresponding values in rejustify dictionary. If the prox-
imity is above threshold accu and there are values in x and y pointing to the
same element in the dictionary, the values will be matched. synonym-matching
and proximity-matching use similar logic of either of the steps described
for synonym-proximity-matching. time-matching aims at standardizing the
time values to the same format before matching. For proper functioning it re-
quires an accurate characterization of date format in structure.x (structure.y
is already classified by rejustify). exact-matching will match two values only
if they are identical. value-selection is a quasi matching method which
for single-valued dimension x will return single value from y, as suggested by
default specification. It is the most efficient matching method for dimensions
which do not show any variability.

default Default values used to lock dimensions in data y which will be not used for
matching against data x. Each empty column to be filled, characterized by
default$column.id.x, must contain description of the default values. If miss-
ing, the API will propose the default values in line with the history of how it was
used in the past.

shape It informs the API whether the data set should be read by columns (vertical)
or by rows (horizontal). The default is vertical.

inits It informs the API how many initial rows (or columns in horizontal data), corre-
spond to the header description. The default is inits=1.

sep The header can also be described by single field values, separated by a given
character separator, for instance ’GDP, Austria, 1999’. The option informs the
API which separator should be used to split the initial header string into corre-
sponding dimensions. The default is sep=','.

learn It is TRUE if the user accepts rejustify to track her/his activity to enhance the
performance of the AI algorithms (it is not enabled by default). To change this
option for all API calls run setCurl(learn=TRUE).

accu Acceptable accuracy level on a scale from 0 to 1. It is used in the matching
algorithms to determine string similarity. The default is accu=0.75.

form Requests the data to be returned either in full, or partial shape. The former
returns the original data with filled empty columns. The latter returns only the
filled columns.

token API token. By default read from global variables.

email E-mail address for the account. By default read from global variables.

url API url. By default read from global variables.

Value

list consisting of 5 elements: data, structure.x, structure.y, keys and default

8 labels

Examples

#API setup
setCurl()

#register token/email
register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

#sample data set
df <- data.frame(year = c("2009", "2010", "2011"),

country = c("Poland", "Poland", "Poland"),
`gross domestic product` = NA,
check.names = FALSE, stringsAsFactors = FALSE)

#endpoint analyze
st <- analyze(df)

#endpoint fill
df1 <- fill(df, st)

isMissing checks if a variable has non-missing values

Description

The function checks if a variable is either null, NA, or has an assigned value. In case of vectors, the
condition is set on all values.

Usage

isMissing(x)

Arguments

x Variable to test.

labels communicates with rejustify/getTableLabels API endpoint

Description

The function returns the list of available labels for data set table delivered by provider. If not
specified otherwise by dim, the labels are returned for all dimensions. For the list of available
provider/tables you can refer to rejustify.com/repos.

Usage

labels(
provider = NULL,
table = NULL,
dim = NULL,
url = getOption("rejustify.mainUrl")

)

register 9

Arguments

provider Relevant provider (required).

table Relevant provider (required).

dim Relevant dimension from provider/table (optional).

url API url. By default read from global variables.

Value

list containing the pairs of value code and label

Examples

#API setup
setCurl()
labels('IMF','WEO')
labels('IMF','WEO','WEO Country')

register sets the token and email as global variables

Description

The function stores the account details into memory to be easier accessed by rejustify package.
The email must correspond to the token that was assigned to it. To register an account visit
rejustify.com.

Usage

register(token = NULL, email = NULL)

Arguments

token API token.

email E-mail address for the account.

Value

errors only

Examples

register(token = "YOUR_TOKEN", email = "YOUR_EMAIL")

10 vis

setCurl sets the default configuration for curl calls

Description

The command stores the connection details into memory to be easier accessed by rejustify package.

Usage

setCurl(
mainUrl = "https://api.rejustify.com",
proxyUrl = getOption("rejustify.proxyUrl"),
proxyPort = getOption("rejustify.proxyPort"),
learn = getOption("rejustify.learn")

)

Arguments

mainUrl Main address for rejustify API calls. Default is set to https://api.rejustify.com,
but depending on the customer needs, the address may change.

proxyUrl Address of the proxy server.

proxyPort Port for communication with the proxy server.

learn Enable AI learning in all API calls by setting learn=TRUE. You can also specify
the learn option in the relevant functions directly.

Examples

#setting up connection through proxy
rejustify::setCurl(proxyUrl = "PROXY_ADDRESS", proxyPort = 8080)

vis visualizes the matching/filling procedures

Description

The function aims at simplyfying.

Usage

vis(object, column = NULL, details = FALSE)

Arguments

object Object returned by the fill function.

column The empty column for which we want to visualize the matching/filling proce-
dures. By default the first empty column is taken.

details Displays id, column, class and feature elements in the table. They are not
displayed by default.

vis 11

Value

list containing the pairs of value code and label

Examples

Not run:
#rdf is an object returned by fill function
vis(rdf)
vis(rdf, details = TRUE)

End(Not run)

Index

adjust, 1
analyze, 3

callCurl, 5

fill, 6

isMissing, 8

labels, 8

register, 9

setCurl, 10

vis, 10

12

	adjust
	analyze
	callCurl
	fill
	isMissing
	labels
	register
	setCurl
	vis
	Index

